
www.manaraa.com

Mahmood: Architectural Design of Random Number Generators and Their Hardware -

50

Architectural Design of Random Number Generators

and Their Hardware Implementations

Sarmad Fakhrulddin Ismael Dr. Basil Shukr Mahmood

University of Mosul/computer University of Ninevah

Engineering Department basil_mahmood@yahoo.com

sarmad.fakhraldeen@gmail.com

Abstract

The architectural design of the random number generators for uniform

distribution, normal distribution, exponential distribution and Rayleigh distribution

using Box-Muller and inverse transformation method has been hardware implemented

on FPGA. Any of the random number generators can generate one sample every clock

cycle. The generators have been implemented on Xilinx Spartan 3E XC3S500E FPGA.

The designed generators work properly up to maximum frequency of 418.41MHz .The

outcome results of the generators have been tested by the chi-square test at a 5% level of

significance which provided the correct required distributions.

Keyword: Box-mulle, Chi-square, Inverse transformation, FPGA.

 وتنفيذها ماديا تصميم معمارية لتوليد الارقام العشوائية
 باسل شكر محمودد. سرمد فخر الدين إسماعيل

 كلية هندسة ألألكترونيات جامعة الموصل/ قسم هندسة الحاسوب

 الملخص
توزيع اسي وتوزيع لارقام العشوائية بتوزيع منتظم وتوزيع طبيعي والمعمارية المصممة لتوليد ا

. FPGA(وطريقة التحويل العكسي تم بناءها ماديا باستخدام ال Box-muller) ـ)رايلي (باستخدام طريقة ال

 Xilinxاي واحد من مولدات الارقام العشوائية ممكن ان تولد رقم واحد في كل دورة. المولدات تم بناءها على

Spartan 3E XC3S500E FPGA. 418.41المولدات المصممة مناسبة للعمل بتردد مقدارهMHz

مقدارها اهميةالنتائج التي تم الحصول عليها من المولدات تم اختبارها بواسطة فحص مربع كاي بمستوى

 % والتي حققت التوزيع المطلوب.5

Received: 9 – 5 - 2013 Accepted: 10 – 10 - 2013

mailto:basil_mahmood@yahoo.com
mailto:sarmad.fakhraldeen@gmail.com

www.manaraa.com

Al-Rafidain Engineering Vol.22 No. 2 March 2014

51

1. Introduction
Random number generators are used in a large number of computationally intensive

modeling and simulation applications such as traffic light simulation [1],communication

system [2],cryptography system [3] ,the most commonly random generators used are uniform

distribution, normal distribution ,exponential distribution and Rayleigh distribution. All types

of random number generators can be derived from the uniform random generators. The most

famous methods for mapping between the generators are Box-muller method and inverse

transformation method.

There have been many researches on their hardware implementation to generate

random number, A VLSI implementation of universal random number generation with

uniform distribution, exponential distribution, Rayleigh distribution and Rayleigh distribution

is proposed by CUI, LI and et.al. [4]. A hardware Gaussian noise generator using the box-

muller method and the error analysis of its elementary function is proposed by Dong-U, John

and et.al. [5], A hardware designs for generating random numbers from arbitrary distributions

using the inversion method are proposed by Ray, Dong-U and et.al. [6]. A ZIGGURAT based

method to generate random number with Gaussian distribution is proposed by Guanglie,

Philip and et.al. [7], FPGA implementation and performance analysis of 8, 16, and 32 bit

LFSR pseudo random number generator system to generate a uniform distribution is proposed

by Amit , Praveena and et.al. [8]. A random number is generated by various methods such as

LFSR and linear congruental generator and blum blum shub to generate random number with

uniform distribution is proposed by Jay, Sudhanshu and et.al. [9].

The paper is organized as follows. In section 2 the background and theory of the

architectural design is presented. Section 3 shows the hardware Implementation details. The

Experimental results are given in section 4. Section 5 concludes this paper.

2. Background and Theory
There are many methods to generate random number with arbitrary distribution, most

of these method based on converting the random number with uniform distribution to another

type of distribution. Review of the methods used in this research is shown below:

2.1 Box-muller method:
This method generates a pair of random variables with normal distribution from two

uniformly distributions over (0,1) with zero mean and standard deviation =1 (N(0,1))[10]

 √

 √

U1and U2 are random variables with uniform distributions.

X1 and X2 are random variables with a normal distributions.

Thus the proposed architecture is based on this method to generate normal distribution.

www.manaraa.com

Mahmood: Architectural Design of Random Number Generators and Their Hardware -

52

2.2 The inverse transformation method (ITM):
The inversion method for generating non-uniform random variables is based on the

simple observation that a random variable X with F as cumulative distribution function

(CDF) can be generated by:

Where U denotes a uniform U (0, 1) random variable and the X is a random variable with

desired distribution [11].

The proposed architectures for exponential distribution and Rayleigh distribution are

based on this method.

The required steps to compute the desired random variable using inverse

transformation method are:

1- Compute the CDF of the desired random variable X.

2- Set F(X) = U.

3- Solve the equation F(X) = U for X in terms of U.

4- Generate uniform random numbers U1, U2, U3, ... and compute

 The desired random variable by X i = F
-1

(U i)

By applying the above steps for exponential distribution:

- Since the PDF (probability density function) for exponential distribution:

 Then the CDF will be:

For more simplicity, because the U is an interval between (0,1) then (1-U) is also an

interval between (0,1) and eq. (7) can be approximated as follows:

Repeating the above steps for Rayleigh distribution results:

The PDF for Rayleigh distribution:

 Then its CDF will be:

www.manaraa.com

Al-Rafidain Engineering Vol.22 No. 2 March 2014

53

 √

3. Hardware Implementation Details

3.1 Linear Feedback Shift Register (LFSR):
It is a shift register whose input bit is a linear function of its previous state. The most

commonly used linear function is XOR. Thus, an LFSR is most often a shift register whose

input bit is driven by the exclusive-or (XOR) of some bits of the overall shift register value

deterministic. The initial value of the LFSR is called the seed. The stream of the values

produced by the register is completely determined by its current (or previous) state. Likewise,

because the register has a finite number of possible states, it must eventually enter a repeating

cycle. However, an LFSR with a well-chosen feedback function can produce a sequence of

bits which appears random and which has a very long cycle. [8][9][12].

The maximum cycle length of the uniform random variable generated from LFSR is

equal -1 where n: is the length of shift register in LFSR. In this paper we use (n=12bit) then

the number of random variable = 4k =4096 numbers.

To choose feedback polynomials that generate maximum period we use a table that is

presented by Xilinx in [13]. The feedback polynomial for 12-bit is
Figure 1 shows the architecture design for 12-bit LFSR

3.2 The proposed architecture:
Figure 2 shows the design of the proposed architecture. Since it has been used the two

12-bit LFSR to generate two uniform random variables, then look-up table method (LUT) is

used to evaluate the two terms in eq. (2) for Box-muller method √ and

 ,since the number of states in LFSR is 4096 state ,then the number of y1 and

y2 is also 4096 states and the architecture uses 4 block RAMs in Spartan3E (each block ram

is 1k*16bit) for each term (y1 and y2) then y1 and y2 have use to generate many

distribution as shown in figure 2:

Figure (1): Architecture design for 12-bit LFSR

www.manaraa.com

Mahmood: Architectural Design of Random Number Generators and Their Hardware -

54

The LUT circuit is shown in figure 3, the circuit uses 8 block RAMs (4 block RAMs

for each term y1 and y2) each block RAM is 1kx16bit .The 30-bit non restoring divider [14]

shown in figure(2) is used to divide the value –lnU1 by lamda () as input in order to generate

the exponential distribution. The non-restoring divider technique is used to increase the

throughput [14]. The Fixed point package [15] is used for representing variables in the VHDL

code. Table (1) shows the length and the format of each variable used in the design.

12 bit LFSR
U1

12 bit LFSR
U2

MUL

MUL

Shift the
result to

right or to
left

according
to input

Lamda(𝛌)

>>1

LUT

circuit

sigma((clk

MUL

Uniform distribution

Normal distribution

Exponential

distribution

Rayleigh

distribution

Non

restoring

divider

Figure (2): The proposed architecture of the random number generators

√

www.manaraa.com

Al-Rafidain Engineering Vol.22 No. 2 March 2014

55

Block
ram

1kx16bit

Block
ram

1kx16bit

Block
ram

1kx16bit

Block
ram

1kx16bit

Block
ram

1kx16bit

Block
ram

1kx16bit

Block
ram

1kx16bit

Block
ram

1kx16bit

Figure (3): LUT circuit design for the evaluation the elementary functions

12 –BIT LFSR

U2

12 –BIT LFSR

U1

Sin(2𝛑𝐔𝟐)

√ 𝟐 𝐥𝐧𝐔𝟏

www.manaraa.com

Mahmood: Architectural Design of Random Number Generators and Their Hardware -

56

4. Experimental results

4.1 Simulation Results:
The complete architecture design was implemented on Xilinx Spartan 3E XC3S500E

FPGA using ISE14.1 and the results of simulation for lamda=2 and sigma=2 are shown in

figure 4. It is clear from the simulation results that all the numbers for all distributions are

generated in every clock cycle.

The distributions for the generated numbers of the four distributions were plotted as

shown in figure 5 using Matlab program.

The distributions for the generated numbers of the four distributions were plotted as

shown in figure 5 using Matlab program.

variable No. of bit for real

part with sign bit

No. of bit for

fraction part

Total No. of

bit

u1,u2 0 12 12

√ 4 12 16

sin2πu2 2 14 16

lamda 4 8 12

sigma 5 8 13

uniform distribution 0 12 12

normal distribution 6 26 32

Exponential distribution 13 17 30

rayleigh distribution 9 20 29

Figure (4): Simulation Results for the Proposed Architecture

Table (1): Number of Bits Representation for each Element

www.manaraa.com

Al-Rafidain Engineering Vol.22 No. 2 March 2014

57

4.2 Speed and resources utilization:
After synthesizing the design by ISE14.1, it is found that the maximum operating

frequency becomes 418.41MHz. The resources utilization summary from the FPGA chip is

shown in table 2.

To make a fair comparison, Table 3 shows a comparison between our design and three

previous related works .These works were implemented on other FPGA target kit so we

resynthesized our design on another FPGA target kit as shown in Table 3.

Table (2): The utilization summary for the proposed

design

www.manaraa.com

Mahmood: Architectural Design of Random Number Generators and Their Hardware -

58

Design [5] [6] This work This work

Method / type

distributions

Box-Muller/

Gaussian

Inversion method/

Gaussian,

exponential
and log-normal

Box-Muller and

inversion method/

uniform, normal,
exponential and

Rayleigh

Box-Muller and

inversion method/

uniform, normal,
exponential and

Rayleigh

Target kit

Xilinx

Virtex-4
XC4VLX

100-12 FPGA

Xilinx

Virtex-4
XC4VLX

100-12 FPGA

Xilinx Spartan 3E
XC3S500E

FPGA

Xilinx

Virtex-4
XC4VLX

100-12 FPGA

slices 1528 487 593 593

Block rams 3 2 8 8

MULT18x18 12 2 3 3

clk speed [MHz] 233 371 418.41 549.753

Sample/clk 2 1 4 4

4.3 Statistical test:
The chi-square Goodness of fit (GoF) test is used for testing the distribution

characteristic and used to establish whether an assumed distribution is correct [4][16]. Table 4

show the test results for the generated numbers of the four distributions. For each test, 1000

sample were considered.

Tables (4): Chi-square test results for uniform, normal distribution,

and exponential distribution and Rayleigh distribution
Distribution type Degree of freedom Statistical quantity Test result

Uniform 5 2.958 Accept distribution

Normal 5 4.965 Accept distribution

Exponential 6 3.904 Accept distribution

Rayleigh 6 4.632 Accept distribution

All tested distributions passed the chi-square test at a 5% level of significant.

5- Conclusions
The proposed architecture generates all the four distinct distributions with better

performance by using a small area and high frequency of Spartan 3E chip and few clock

cycles. The used area of Spartan 3E is 13% and the maximum operating frequency becomes

418.41MHz. This enhancement in performance is due to the usage of LUT for constructing

the elementary functions and also applying the modified non-restoring division algorithm.

The proposed architecture is used as good in real time application. To check the Goodness of

fit (GoF) the resulted numbers pass the chi-square test at 5% level of significance.

6- References
[1] Zhen Shen, Kai Wang And Fenghua Zhu,"Agent-Based Traffic Simulation And Traffic

Signal Timing Optimization With GPU", 14th International IEEE Conference On

Intelligent Transportation Systems, October 5-7, 2011, pp. 145-150.

Table (3): comparisons of different RNG implemented on different

 Xilinx FPGA target kit

www.manaraa.com

Al-Rafidain Engineering Vol.22 No. 2 March 2014

59

[2] Dong-U Lee, Wayne Luk, John Villasenor And Peter Y.K. Cheung," A Hardware

Gaussian Noise Generator For Channel Code Evaluation",FCCM '03 Proceedings Of The

11th Annual IEEE Symposium On Field-Programmable Custom Computing, 2003, pp.

69-78.

[3] Franciszek Seredynski, Pascal Bouvry and Albert Y. Zomaya", Cellular Automata

Computations And Secret Key Cryptography", parallel computing, Volume 30, Issues 5-

6, May–June 2004, pp. 753–766.

[4] CUI Wei, LI Chengshu And SUN Xin “FPGA Implementation Of Universal Random

Number Generator”, Proceedings. ICSP'04. 7th International Conference on , IEEE, Vol.

1, 2004,

pp. 495–498.

[5] Dong-U Lee, John D. Villasenor, Wayne Luk And Philip H.W. Leong," A Hardware

Gaussian Noise Generator Using The Box-Muller Method And Its Error Analysis " , IEEE

transactions on computers, Vol. 55, No. 6, June 2006, pp. 659-671.

[6] Ray C. C. Cheung, Dong-U Lee, Wayne Luk And John D. Villasenor," Hardware

Generation Of Arbitrary Random Number Distributions From Uniform Distributions Via

The Inversion Method " , IEEE transactions on very large scale integration (VLSI)

systems, Vol. 15, No. 8, August 2007, pp. 952-962.

[7] Guanglie Zhang, Philip H.W. Leong, Dong-U Leey, John D. Villasenor Ray C.C. Cheung

and Wayne Luk," Ziggurat-Based Hardware Gaussian Random Number Generator "

International Conference On Field Programmable Logic And Applications, 2005, pp.

275-280.

[8] Amit Kumar Panda, Praveena Rajput And Bhawna Shukla, "Design Of Multi Bit LFSR

PNRG And Performance Comparison On FPGA Using VHDL", International Journal of

Advances in Engineering & Technology (IJAET), Vol. 3, Issue 1, , 2012, pp. 566-571.

[9] Jay Kumar1, Sudhanshu Shukla, Dhiraj Prakash, Pratyush Mishra And Sudhir Kumar,

"Random Number Generator Using Various Techniques Through VHDL", International

Journal Of Computer Applications In Engineering Sciences, Vol. I, Issue II, June 2011.

[10] G. Box and M. Muller, “A Note on the Generation of Random Normal Deviates”, Annals

Math. Statistics, Vol. 29, 1958, pp. 610-611.

[11] W. Ho¨rmann and J. Leydold, “Continuous Random Variate Generation by Fast

Numerical Inversion,” ACM Trans. Modeling and Computer Simulation, Vol. 13, No. 4,

2003, pp. 347-362.

[12] Linear Feedback Shift Register ,Wikipedia website. [Online]. Available:

 http://en.wikipedia.org/wiki/Linear_feedback_shift_register 2013.

[13] Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random Sequence

Generators,

 http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf

[14] Bojan Jovanovic and Milun Jevtic,"FPGA implementation of throughput increasing

techniques of the binary dividers", international scientific conference,19-20 November

2010, pp. 397-401.

[15] David Bishop, "Fixed point package user’s guide", http://www.vhdl.org/vhdl-200x/vhdl-

200x-ft/packages/files.html,2006.

[16] Jorge Luis Romeu,"The Chi-square: a large-sample Goodness of Fit test", Vol. 10, No. 4,

2003-2004.

http://www.sciencedirect.com/science/article/pii/S0167819104000419
http://www.sciencedirect.com/science/article/pii/S0167819104000419
http://www.sciencedirect.com/science/journal/01678191/30/5
http://www.sciencedirect.com/science/journal/01678191/30/5
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10158
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10158
http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf

